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Abstract

In this work, the influence of Joule heating on MHD mixed convection in a square

porous cavity having nanofluid together with thermal radiation has been ana-

lyzed. Vertical walls are supposed to be adiabatic and moving in the opposite

directions with constant speed. Bottom wall is kept at hot temperature and the

top wall is fixed at cold temperature. The Koo-Kleinstreuee-Lee (KKL) model is

employed for the evaluation of effective thermal conductivity and dynamic viscos-

ity of nanofluid. Impact of pertinent parameters in specific ranges such as Darcy

number, Richardson number, radiation parameter, temperature ratio parameter,

porosity parameter, Eckert number, Hartmann number and volume fraction of

solid particles have been studied and presented in the form of isotherms, stream-

lines and plots. The dimensionless governing partial differential equations are

discretized by using the Galerkin based finite element formulation.
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Chapter 1

Introduction

In this modern world, magnetic forces and mixed convective mode of heat transfer

have received more importance and consideration in engineering sciences. Many

scientist and engineers are trying to control convection phenomena in various sit-

uations for example in many metallurgical, nuclear and chemical processes and

reactive polymer flows. They include other areas of interest in medical and en-

gineering fields for example the crystal growth, microwave heating, magnetic res-

onance imaging (MRI) of mass transport process [1], electronic cooling, nuclear

magnetic resonance (NMR) to petroleum exploration [2] and the nuclear waste

management. The natural convection inside the porous enclosure filled with fluid

numerically analyzed by Costa et al. [3] and concluded that the phenomena is

effected by the magnetic field induced by two electric currents flowing parallel

to the vertical surface of the cavity. Rahman et al. [4] have analyzed the MHD

natural convection of heat transfer in a semi-circular cavity. The finite element

method (FEM) was used to find the solution of the proposed problem. Ozoe and

Okada [5] have analyzed the impact of free convection of heat transfer of molten

gallium in cubic enclosure. Grosan et al. [6] have discussed the effect of internal

heat generation and inclined magnetic field in free convection filled with copper-

water nanofluid in a rectangular porous enclosure. It was concluded that for the

parallel flow structure with the heat transfer source inside the cavity has strong

conduction mode. Chamkha [7] has performed the simulation for the MHD flow in

1
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vertical walls considering heat generation and chemical reaction. Barron et al. [8]

explored the impact of magnetic forces of free convection in a rectangular enclosure.

The situation where both the buoyant forces and pressure interact with each other

is said to be mixed convection. Mixed convection is found in many engineering de-

vices. Many fields of geophysical system such as the dynamics of lakes [9], heating

and drying process [10], electronic equipment cooling [11], solar ponds [12] and

float glass production [13] involve the mixed convection process. Khanafer and

Chamka [14] examined the mixed convection flow in a porous enclosure filled with

a fluid. It was concluded that the internal heat generation inside the cavity has

significant effects on the isotherms and streamlines for small values of Richardson

number. The impact of opposite thermal boundary conditions on mixed convection

in a porous enclosure has been analyzed by Basak et al. [15]. The heating impact of

mixed convection in the lid driven enclosure has been studied by Sivakumar et al.

[16]. Shivasankaran et al. [17] also studied the lid driven enclosure with heating on

both side of surfaces and found that there was direct relation on heat transfer rate.

A material containing the pores in it is said to be a porous medium.The term

porosity is used in many fields including materials, engineering and earth sciences.

The convection and conduction modes of heat transfer in a porous enclosure have

been studied by Baytas et al. [18]. The working fluid in their problem was taken as

air. The cavity consists of two vertical surfaces at opposite uniform temperatures

and two horizontal conductive surfaces of finite thickness. Saeid [19] investigated

the natural convection inside a porous enclosure whereas the vertical boundaries

are isothermal at opposite temperatures. It was concluded that the Nuavg was

increased by increasing the values of Raleigh number. The natural convection in

vertical cylinder bounded by solid walls has been studied by Sheremet and Tri-

fonova [20].
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Many researches [21, 22] investigated the nanofluids in different geometries with

convective heat transfer. Koo-Kleinstreuer-Li (KKL) model and many other mod-

els have been proposed to compute the thermal conductivity and viscosity of the

nanofluid. Salmam et al. [23], Ganji et al. [24] analyzed the heat transfer char-

acteristics of nanofluid. The recent developments show that the nanofluid is an

effective coolant for electronic devices. Koh and Colony [25] analyzed the micro-

channel as a porous medium by using Darcy equation. The impact of different

aspect ratios on heat transfer rate in porous enclosure filled with copper-water

nanofluid have been reviewed by Ghazvini and Shokouhmand [26].

Thermal radiation is the electromagnetic radiation which is emitted from a mate-

rial due to the heat of the material. Most of the researchers analyzed the impact

of the linear radiation [27]. Recently Dogonchi et al. [28] explored the impact

of radiation on heat transfer of nanofluid flow in a porous medium. It was con-

cluded that an increase in the velocity and decrease in the temperature profile

were observed by increasing the Reynolds number and expansion ratio. Taseer et

al. [29] have analyzed the impact of MHD nonlinear thermal radiation filled with

nanofluid. Mixed convection and nonlinear thermal radiation filled with copper-

water nanofluid have been discussed by Qayum et al. [30]. It was concluded that

the heat transfer rate increases by increasing the values of mixed convection pa-

rameters. Sheikholeslami [31] also discussed the thermal radiations impacts on the

nanofluid flow.

The passage of an electric current through a conductor produces heat is said to

be Joule heating. Ohmic heating is another name of Joule heating. Currently,

scientists and engineers are very concerned about increasing the efficiency of dif-

ferent industrial and mechanical systems. Hence, flow problem related with Joule

heating in different physical aspects are discussed by many researchers. Mehmood

et al. [32] discussed the magnetic forces and mixed convection in a square en-

closure having blockage filled with nanofluid together with Joule heating. It was
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concluded that the gradual increment in the values of Eckert number and mag-

netic field strength increases the average temperature with in the enclosure. Mixed

convection, magneto-hydrodynamic and Joule heating impacts in rectangular lid

driven enclosure have been performed by Chowdhury et al. [33]. The impact of

magneto-hydrodynamics in a square enclosure with a heated circular source to-

gether with Joule heating has been reported by Rehman et al. [34].

1.1 Thesis Contribution

The main purpose of the present study is to perform the numerical analysis for the

mixed convection flow of nanofluid in a lid-driven enclosure. Impact of Joule heat-

ing are analyzed in the presence of magnetic field and different physical parameters

such as Pr, Rd, Nr, Ri, Re, Ha and Ec on rate of heat transfer is examined. The

problem consists of four coupled nonlinear partial differential equations that are

solved by using Galerkin finite element technique. Graphical results are discussed

and presented quantitatively to illuminate the solution.

1.2 Thesis Layout

This thesis is further divided into four chapters:

• Chapter 2 includes few important definitions, laws and concepts that are

helpful in understanding the work in third and fourth chapter.

• Chapter 3 presents the review of the research paper of Mehmood et al. [35].

Mixed convection MHD flow in porous square enclosure filled with nanofluid.

Galerkin finite element method has been applied for the nonlinear partial dif-

ferential equations. Results are analyzed through streamlines, isotherms and
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MATLAB graphs.

• Chapter 4 extends the work of Mehmood et al. [35] by considering the ef-

fect of Joule heating in the energy equation. FEM is used to discretized the

set of governing PDEs by using elements Q2/P
disc
1 . Various numerical results

has been discussed for different physical parameters such as Ri, Re, Ec, Ha

etc. The impact of governing parameters is analyzed through streamlines,

isotherms and MATLAB graphs.

• Chapter 5 summarizes the work and concludes the dissertation.

All the references used in this thesis are listed at the end.



Chapter 2

Some Important Definitions

This chapter contains the basic definitions, concepts, governing laws relating to the

fluid mechanics ([36], [37], [38], [39], [40], [41]) and heat transfer phenomena [42].

Moreover, the fundamental of finite element method [43] used for the numerical

estimation of the given problem is also discussed.

2.1 Fluid Flows and Related Terminologies

Definition 2.1. (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be. Because the fluid

motion continues under the application of a shear stress, we can also define a fluid

as any substance that cannot sustain a shear stress when at rest.”

Definition 2.2. (Fluid Mechanics)

“The fluid mechanics is defined as the science that deals with the behavior of fluids

at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids

with solids or other fluids at the boundaries.”

Definition 2.3. (Fluid Statics)

“The branch of mechanics that deals with bodies at rest is called statics.”

6
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Definition 2.4. (Fluid Dynamics)

“The branch that deals with bodies in motion is called dynamics.”

Definition 2.5. (Density)

“Density is defined as mass per unit volume.The density of a substance, in general,

depends on temperature and pres- sure. The density of most gases is proportional

to pressure and inversely proportional to temperature. Liquids and solids, on the

other hand, are essentially incompressible substances, and the variation of their

density with pressure is usually negligible.” Mathematically it can be written as

ρ =
m

V̄
. (2.1)

Definition 2.6. (Pressure)

“The pressure in a fluid at rest at a given point is the same in all directions, and

we define pressure as the normal component of force per unit area.” It is expressed

by P and mathematically, it can be written as

P =
F

A
, (2.2)

where A is area and F is applied force.

Definition 2.7. (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid.” It is represented

by µ and mathematically, it can be written as

µ =
shear stress

shear strain
. (2.3)

Definition 2.8. (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and the density of fluid.

It is denoted by the greek symbol (ν) called nu.” It can be written as

ν =
µ

ρ
. (2.4)
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2.2 Classification of Fluids

Definition 2.9. (Ideal Fluid or Inviscid Fluid)

“A fluid, which is incompressible and is having no viscosity is known as an ideal

fluid.”

Definition 2.10. (Real Fluid or Viscous Fluid)

“A fluid, which possesses viscosity, is known as real fluid .”

Definition 2.11. (Newtonian Fluid)

“Fluids for which the rate of deformation is proportional to the shear stress are

called Newtonian fluids. Most common fluids such as water, air, and gasoline are

Newtonian under normal conditions.”

Definition 2.12. (Non−Newtonian Fluid)

“Fluids for which the shearing stress is not linearly related to the rate of shearing

strain are designated as non-Newtonian fluids.” The examples of non-Newtonian

fluid are blood, toothpaste, custard, ketchup, shampoo and honey. Mathematically

it can be written as

τyx ∝
(
du

dy

)n
, n 6= 1

τyx = µ

(
du

dy

)n
,

where, µ is apparent viscosity and n is the index of flow behaviour.

2.3 Types of Flows

Definition 2.13. (Flow)

“Flow is defined as the quantity of fluid (gas, liquid or vapour) that passes a point

per unit time.” Many types of flow are given below:

Definition 2.14. (Laminar Flow)

“The highly ordered fluid motion characterized by smooth layers of fluid is called
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laminar. The word laminar comes from the movement of adjacent fluid parti-

cles together in “laminates.” The flow of high-viscosity fluids such as oils at low

velocities is typically laminar.”

Definition 2.15. (Turbulent Flow)

“The highly disordered fluid motion that typically occurs at high velocities and is

characterized by velocity fluctuations is called turbulent. The flow of low-viscosity

fluids such as air at high velocities is typically turbulent.”

Definition 2.16. (Steady Flow)

“The term steady implies no change at a point with time.” Mathematically, it can

be expressed as

dη∗

dt
= 0, (2.5)

where η∗ is fluid property.

Definition 2.17. (Unsteady Flow)

“The opposite of steady is unsteady. The term unsteady implies change at a point

with time.” Mathematically, it can be expressed as

dη∗

dt
6= 0, (2.6)

where η∗ is fluid property.

Definition 2.18. (Compressible Flow)

“When density variations within a flow are not negligible, the flow is called com-

pressible. The most common example of compressible flow concerns the flow of

gases.”

Definition 2.19. (Incompressible Flow)

“Incompressibility is an approximation, and a flow is said to be incompressible if

the density remains nearly constant throughout. Therefore, the volume of every

portion of fluid remains unchanged over the course of its motion when the flow (or

the fluid) is incompressible.”
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Definition 2.20. (Uniform Flow)

“Uniform flow is defined as that type of flow in which the velocity at any given

time does not change with respect to space (i.e length of direction of the flow).”

Definition 2.21. (Non−Uniform Flow)

“Non-uniform flow is that type of flow in which the velocity at any given time

changes with respect to space.”

Definition 2.22. (Internal Flow)

“The flow in a pipe or duct is internal flow if the fluid is completely bounded by

solid surfaces.”

Definition 2.23. (External Flow)

“The flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe

is external flow.”

2.4 Heat Transfer Phenomenon and Related

Properties

Definition 2.24. (Conduction)

“Conduction is the transfer of heat from one part of a body at a higher tempera-

ture to another part of the same body at a lower temperature, or from one body at

a higher temperature to another body in physical contact with it at a lower tem-

perature. The conduction process takes place at the molecular level and involves

the transfer of energy from the more energetic molecules to those with a lower

energy level. This can be easily visualized within gases, where we note that the

average kinetic energy of molecules in the higher-temperature regions is greater

than that of those in the lower-temperature regions.” Metals are good conductors.

Definition 2.25. (Convection)

“Convection, sometimes identified as a separate mode of heat transfer, relates to

the transfer of heat from a bounding surface to a fluid in motion, or to the heat
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transfer across a flow plane within the interior of the flowing fluid.”

It is further divided into three categories that are given below:

Definition 2.26. (Force Convection)

“If the fluid motion is induced by a pump, a blower, a fan, or some similar device,

the process is called forced convection.” Forced convection is the method of energy

transportation in which fluid is forced to move using an external source.

Definition 2.27. (Natural Convection)

“If the fluid motion occurs as a result of the density difference produced by the

temperature difference, the process is called free or natural convection. Natural

convection is the motion that results from the interaction of gravity with density

differences within a fluid.”

Definition 2.28. (Mixed Convection)

“Mixed convection occurs when both natural convection and forced convection

play significant roles in the transfer of heat. In applications it is important to first

establish whether satisfactory predictions will result by ignoring either one, or if

the combined effects must be considered.”

Definition 2.29. (Radiation)

“Radiation, or more correctly thermal radiation, is electromagnetic radiation emit-

ted by a body by virtue of its temperature and at the expense of its internal energy.

Thus thermal radiation is of the same nature as visible light, x rays, and radio

waves, the difference between them being in their wavelengths and the source of

generation.” Examples of radiation is the heat from the sun, or heat released by

filament of the bulb.

Definition 2.30. (Thermal Conductivity)

“The property of a material to conduct heat is the Thermal conductivity.It is

denoted by k. Thermal resistivity is the reciprocal of thermal conductivity .Heat

transfer occurs at a lower rate in materials of low thermal conductivity than in

materials of high thermal conductivity.” Copper ia an example of metals with high

thermal conductivity.
dQ

dt
= −kAdT

dx
. (2.7)



Some Important Definitions 12

Definition 2.31. (Thermal Diffusivity)

“It measures the ability of material to conduct thermal energy relative to its ability

to store thermal energy means how fast or how easily heat can penetrate an object

or substance.” Mathematically, it is given as

α =
k

ρCp
. (2.8)

2.5 Dimensionless Numbers

Definition 2.32. (Reynolds Number (Re))

“This number expresses the ratio of the fluid inertia force to that of molecular

friction (viscosity). It characterizes the hydrodynamic conditions for viscous fluid

flow. With large Re numbers, the dynamic flow effect cannot be equalized by

viscous friction and the flow stability is lost, which is manifested by swirls and

turbulence in the fluid.” The Re is expressed as

Re =
ρVwL

µ
=
VwL

ν
. (2.9)

where, Vw is lid velocity, ν is kinematic viscosity and L is length of cavity.

Definition 2.33. (Prandtl Number (Pr))

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with convec-

tive and diffusive heat transfers.” It is named after Ludwig Prandtl. The Prandtl

number is written as

Pr =
ν

α
(2.10)

Definition 2.34. (Richardson Number (Ri))

“It expresses the ratio of buoyancy effects to vertical slip effects.” It can be written

as

Ri =
Gr

Re2
. (2.11)

Definition 2.35. (Raleigh number (Ra))

“It characterizes the free convection heat transfer along a heat-exchanging surface.



Some Important Definitions 13

It expresses the buoyancy-to-diffusion ratio or, alternatively, the free convection

thermal instability in fluids.” It is a dimensionless number introduced by Lord

Raleigh. It is denoted by Ra and mathematically it can be written as

Ra =
gβ(Th − Tc)L3Pr

ν2
, (2.12)

where g, β, L3 and ν represents the gravitational acceleration, volume expansion

coefficient, characteristic length and kinematic viscosity.

Definition 2.36. (Darcy number (Da))

“The effect of permeable medium on the cross-sectional area (commonly squared

diameter) on a fluid is known as Darcy number. It is named after Henry Darcy.”

It is expressed as

Da =
K

L2
. (2.13)

where, K is permeability of porous media and L is length of cavity.

Definition 2.37. (Hartmann number (Ha))

“It is an important criterion of magneto-hydrodynamics. It expresses the ratio of

the induced electrodynamic (magnetic) force to the hydrodynamic force of the vis-

cosity or, alternatively, the ratio of the ponderomotive force (the electromagnetic

volume force by means of which the magnetic field acts on a conductor through

which electric current flows, which causes magnetic pressure) to the molecular

friction force.” Mathematically, it is given as

Ha = BL

√
σf
µf
. (2.14)

Definition 2.38. (Grashof number (Gr))

“It expresses the ratio of the product of inertia and buoyancy forces to the square

of a viscous force.” This correlation is known as Grashof number (Gr). Mathe-

matically,it is expressed as

Gr =
gβ(Ts − T∞)L3

ν2
. (2.15)
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Definition 2.39. (Eckert number (Ec))

“It expresses the ratio of kinetic energy to a thermal energy change.” It can be

written as

Ec =
V 2
w

(Cp)f (Th − Tc)
. (2.16)

Definition 2.40. (Porous medium)

“It characterizes the porous environment behaviour with convective and mixed

convective radiation flow and interaction in vertical porous canals. It occurs, for

example, in magneto-hydrodynamics and is accompanied by entropic changes.” A

material containing the pores in it is called a porous medium. A porous medium

is often considered by its porosity. Pores are usually filled with fluid, that is liquid

and gases.

Definition 2.41. (Nusselt Number (Nu))

“It expresses the ratio of the total heat transfer in a system to the heat transfer

by conduction. In characterizes the heat transfer by convection between a fluid

and the environment close to it or, alternatively, the connection between the heat

transfer intensity and the temperature field in a flow boundary layer. It expresses

the dimensionless thermal transference.” It is introduced by Wilhelm Nusselt.

Mathematically, it is given as

Nu =
hL

k
. (2.17)

where, L is the characteristic length, h denotes convective heat transfer and k is

thermal conductivity.

2.6 Basic Governing Equations

2.6.1 Continuity Equation

“The continuity equation in this form describes the rate of change of density at

a fixed point in the fluid. The continuity equation is developed from the law of
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conservation of mass. Mathematically, it is described as

∂ρ

∂t
+∇.(ρV ) = 0. (2.18)

For incompresible fluid, the continuity equation is written as

∇.V = 0.” (2.19)

2.6.2 Law of Conservation of Momentum

“Each particle of fluid which is in state of steady or accelerated motion obey

Newton second law of motion. This law states that the combination of all applied

external forces acting on an object is equal to time rate of change of its linear

momentum. This law can be given as

ρ
dV

dt
= div τ + ρb. (2.20)

For Navier-Stokes Equation

τ = −pI + µA1, (2.21)

where A1 is the tensor and first time it was defined by Rivlin-Erickson

A1 = grad V + (grad V )t. (2.22)

In the above equations, d
dt

denotes material time derivative or total derivative,

ρ denotes density, V denotes velocity, p the pressure, b is body forces, µ is the

dynamic viscosity and τ here denotes the Cauchy stress tensor. Cauchy stress

tensor is expressed in the matrix form as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.23)
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where σii, i = (x, y, z)are normal stresses, otherwise the shear stress. For two

dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

grad V =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 (2.24)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.25)

Similarly, by repeating the above process for y component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
.” (2.26)

2.6.3 Energy Equation

“For a stationary volume element through which a pure fluid is flowing, the energy

equation reads.

ρCp

(
∂

∂t
+ V∇

)
T = k∇2T + τL1 + ρCp

[
DB∇C.∇T +

DT

Tm
∇T
]
, (2.27)

where ρf represents the density, (Cp)f denotes the specific heat of basic fluid,

(Cp)s represents the material of specific heat, L1 is the rate of strain tensor, T is

temperature, DB is the Brownian motion coefficient, DT represent the temperature

diffiusion coefficient and Tm denote the mean temperature. The expression for

Cauchy stress tensor τ for the incompressible fluid is expressed by

τ = −pI + µA1, (2.28)

where A1 is the tensor, µ is dynamic viscosity, p is pressure.

A1 = grad V + (grad V )t, (2.29)
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where t represents transpose of the matrix for two dimensional field velocity, τ is

the Cauchy stress tensor.

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 .” (2.30)

2.7 Finite Element Method

The finite element method (FEM) was first introduced by Clough [43]. It subdi-

vides a large problem into collection of smaller parts, known as the finite elements.

The FEM transforms the governing equations in to an appropriate form known as

weak formulation or variational form.

The Galerkin weighted residual method is utilized for the implementation of FEM.

In this method, the weight functions are chosen to be the trial functions them-

selves. The steps for the implementation of FEM based on the Galerkin residual

technique are summarized as follows:

1. Both sides of governing equation is multiplied by the test function, that is

vanishing on the boundary of the domain.

2. Use integration by parts to transform the higher order of differentiation from

the unknown variable U to the test function w.

3. Include natural boundary conditions in the boundary integrals and the es-

sential boundary conditions to the trial space. This is known as weak for-

mulation.

4. Generate mesh or triangulation which divides the entire domain into non-

overlapping elements. In one dimension, the mesh is a set of points that is,

x0 = 0, x1, x2, . . . xN = 1, where xi is said to be a node and ei = (xi, xi+1) is

an element such that ei ∩ ej = ϕ for i 6= j. hi = xi − xi−1 for i = 0, 1, . . .N

is known as mesh size.
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5. Approximate the infinite dimensional trial space U and test space W by

finite dimensional spaces Uh and Wh, respectively where

Uh(finite dimensional space)⊂ U (solution space).

6. Now we choose the basis functions ϕ1, ϕ2, ...φN of wh, so that every test

functions wh ε Wh can be described as wh =
∑N

i=1 wiϕi ε Wh.

7. Find uh ε Uh in such away (uh, wh) = b(wh) ∀ wh =
∑N

i=1wiϕi ε Wh for

i = 1, . . . N ,

⇒ a(uh, ϕi) = b(ϕi), where i = 1, . . . N .

Using uh =
∑N

j=1 ujϕj , for j = 1, . . . N ,

a (
∑N

i,j=1 ujϕj, ϕi) = b(ϕi) for i, j = 1, 2, 3, . . . N ,

⇒
∑N

i,j=1 a(ϕj, ϕi)uj = b(ϕi) for i, j = 1, 2, 3, . . . N .

where uj are the solution values at the nodes. Also a(u,w) is bilinear form

and b(w) is the linear form.

Example:

Consider a 2D Poisson equation.

−∆G = f, in Ω (2.31)

G = 0, on ∂Ω (2.32)

Here, f reprsents the known function and we find G, Ω denotes the domain of

problem and ∂Ω is the boundary of the problem. In order to find the approximate

solution of Eq. (2.31) using FEM, the following steps are required:

• Obtain the weak formulation of the Eq. (2.31) as follows

−
∫

Ω

w∆GdΩ =

∫
Ω

wfdΩ, (2.33)
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• Green’s theorem is used to get the first order derivatives from second order

derivatives.

∫
Ω

w
∂G

∂n
ds =

∫
Ω

∇w∇GdΩ +

∫
Ω

w∆GdΩ (2.34)

• Substitute Eq. (2.34) into Eq. (2.33), we get

−
∫

Ω

w
∂G

∂n
ds︸ ︷︷ ︸

0

+

∫
Ω

∇w∇GdΩ =

∫
Ω

wfdΩ, (2.35)

the corresponding homogeneous boundary condition is cancelling the bound-

ary integral, so we have

∫
Ω

∇w∇GdΩ =

∫
Ω

wfdΩ, (2.36)

• Elemental weak form

∫
Ωe

∇w∇GdΩ =

∫
Ωe

wfdΩ, (2.37)

• In 2D cartesian plane, the Eq. (2.37) can be written as,

∫
Ωe

(
∂w

∂x

∂G

∂x
+
∂w

∂y

∂G

∂y

)
dΩ =

∫
Ωe

wfdΩ, (2.38)

• Over an element the approximate solution is

Ge =
M∑
j=1

Ge
jζ
e
j (x, y) (2.39)

Gj is the node of solution value and ζj is the basis function.

• Assemble local matrices in to the global matrix K and solve the system of

equations KG = F to obtain the discrete solution.



Chapter 3

Mixed Convection MHD in

Aluminium-Water Nanofluid

Filled Porous Cavity

This chapter, we examine the mixed convective magneto-hydrodynamic nanofluid

flow in a porous enclosure. The impact of inclined magnetic field and nonlinear

thermal radiation is also considered while modeling the momentum and energy

equation, respectively. The governing partial differential equations are converted

into dimensionless PDEs with the help of appropriate transformation. Galerkin

weighted residual method based on finite element technique has been used to solve

the considered problem. Influence of the governing parameters is analyzed through

isotherms, streamlines and some useful MATLAB graphs. This chapter provides

the review of [35].

3.1 The Problem Configuration

We consider the two dimensional square shaped porous enclosure. The schematic

diagram of the problem is shown in Figure 3.1. Enclosure is filled with Alumina-

water nanofluid. The horizontal walls of the enclosure are maintained at different

20
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temperature, the upper surface of the cavity is fixed at cold temperature Tc whereas

the bottom surface is maintained at hot temperature Th. Both the vertical sur-

faces of the enclosure are adiabatic and they are moving in opposite direction

with velocity Vw. The fluid under observation is considered as incompressible and

Newtonian. The mixture of base fluid and nanoparticles is stable and having the

same temperature. Isotropic and homogenous is considered to be porous medium.

Impacts of Joule heating and viscous dissipation are ignored whereas nonlinear

thermal radiation has been considered in the energy equation. Thermophysical

properties of nanoparticles (Aluminium) and base fluid (water) are considered as

constant given in Table 3.1 whereas the density varies with temperature and mod-

eled according to Boussinesq approximation in the momentum equation.

Figure 3.1: Schematic diagram of the physical model.
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Physical Properties H2O Al2O3

ρ(kgm−3) 997.1 3970
Cp(Jkg−1K−1) 4179 765
k(Wm−1K−1) 0.613 40
β(K−1) 21× 10−5 1.89× 10−5

σ(Ωm)−1 0.05 1× 10−10

ds(nm) - 47

Table 3.1: Thermophysical properties of water (H2O) and alumina (Al2O3).

For nonlinear thermal radiation Rosseland approximation has been adopted [44].

qrx = −4σ∗
3a∗

∂T 4

∂x
= −16σ∗

3a∗
T 3∂T

∂x
, (3.1)

qry = −4σ∗
3a∗

∂T 4

∂y
= −16σ∗

3a∗
T 3∂T

∂y
. (3.2)

3.1.1 The Dimensional Governing Equations

The dimensional form of the continuity, momentum and energy equations along

with associated boundary conditions for the proposed problem are mentioned be-

low [35]:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0 (3.3)

x and y-momentum equation:

ρnf
ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
µnf
ε

(
∂2u

∂x2
+
∂2u

∂y2

)
+ σnfB

2
0(v sin γ cos γ − u sin2 γ)

− µnf
K

u− 1.75ρnf√
150Kε

3
2

(
√
u2 + v2)u. (3.4)

ρnf
ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
µnf
ε

(
∂2v

∂x2
+
∂2v

∂y2

)
+ σnfB

2
0(u sin γ cos γ − v cos2 γ)

− µnf
K

v + (ρβ)nfg(T − Tc)−
1.75ρnf√
150Kε

3
2

(
√
u2 + v2)v. (3.5)
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Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
− 1

(ρCp)nf

(
∂qrx
∂x

+
∂qry
∂y

)
(3.6)

Dimensional Boundary Conditions

The associated boundary conditions can be given as

• On the upper surface:

u = 0, v = 0, T = Tc

• On the lower surface:

u = 0, v = 0, T = Th

• On the vertical left surface:

u = 0, v = −Vw,
∂T

∂x
= 0

• On the vertical right surface:

u = 0, v = Vw,
∂T

∂x
= 0

3.1.2 Thermophysical Properties of Nanofluid

The following correlations for the thermophysical properties are considered for the

simulation of modeled problem:

• Effective density:

ρnf = (1− φ)ρf + φρs.
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• Thermal diffusivity:

αnf =
knf

(ρCp)nf
.

• Specific heat:

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s.

• Coefficient of thermal expansion:

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)s.

• Electrical conductivity:

σnf = σf

[
1 +

3(σ − 1)φ

(σ + 2)− (σ − 1)φ

]
, σ =

σs
σf
.

• Thermal conductivity:

The model for effective thermal conductivity was suggested by Koo and

Kleinstreuer [45] and is given by

knf = kstatic + kBrownian.

where

kstatic = kf

[
1 +

3(ks/kf − 1)φ

(ks/kf + 2)− (ks/kf − 1)φ

]

and

kBrownian = 5× 104φρf (Cp)f

√
kbT

ρsds
g

′
(T, φ, ds).
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The empirical g
′
-function for Al2O3-water nanofluid is written as

g
′
(T, φ, ds) = (c1 + c2 ln(ds) + c3 ln(φ) + c4 ln(φ) ln(ds) + c5 ln (ds)

2) ln(T )

+ (c6 + c7 ln(ds) + c8 ln(φ) + c9 ln(φ) ln(ds) + c10 ln (ds)
2).

Coefficient values Alumina-water

c1 52.813488759

c2 6.115637295

c3 0.6955745084

c4 0.041745555278

c5 0.176919300241

c6 -298.19819084

c7 -34.532716906

c8 -3.9225289283

c9 -0.2354329626

c10 -0.999063481

Table 3.2: Coefficients for the empherical formula.

• Effective Viscosity:

Due to micromixing in suspentions, the effective viscosity model was pro-

posed by Koo and Kleinstreuer [46].

µnf = µstatic + µBrownian = µstatic +
kBrownian

kf
× µf
Prf

,

where µstatic = µf/(1− φ)2.5.

• Effective heat capacity due to porosity:

(ρCp)m = (1− ε)(ρCp)s + ε(ρCp)nf .
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• Effective thermal conductivity:

km = (1− ε)ks + εknf .

3.1.3 The Non-Dimensional Governing Equations

The following parameters are introduced in order to reduce the governing PDEs

to the non-dimensional form.

X =
x

L
, U =

u

Vw
, Y =

y

L
, V =

v

Vw
, P =

p

ρnfV 2
w

, θ =
T − Tc
Th − Tc

,

Da =
K

L2
, P r =

νf
αf
, Rd =

4σ∗T
3
c

a∗αf
, Gr =

gβ∆TL3

ν2
f

, Re =
VwL

νf
,

Ha = B0L

√
σf
µf
, Ri =

Gr

Re2
, Nr =

Th
Tc
.

The transformed governing equations are given as

∂U

∂X
+
∂V

∂Y
= 0. (3.7)

1

ε2

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+

1

εRe

µnf
ρnfνf

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ)

− µnf
ρnfνf

1

ReDa
U − 1.75

√
150Daε

3
2

(
√
U2 + V 2)U. (3.8)

1

ε2

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+

1

εRe

µnf
ρnfνf

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re
(U sin γ cos γ − V cos2 γ)

− µnf
ρnfνf

1

ReDa
V − 1.75

√
150Daε

3
2

(
√
U2 + V 2)V. (3.9)
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U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

(
αnf
αf

km
knf

+
4

3

Rd

(ρCp)nf
(1 + (Nr − 1)θ)3

)
(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
(3.10)

Dimensionless Boundary Conditions:

The dimensionless boundary conditions implemented for the model problem are

reduced as:

• On the upper surface:

U = 0, V = 0, θ = 0.

• On the lower surface:

U = 0, V = 0, θ = 1.

• On the left vertical surface:

U = 0, V = − 1,
∂θ

∂X
= 0.

• On the right vertical surface:

U = 0, V = 1,
∂θ

∂X
= 0.

3.1.4 The Nusselt Number

The local Nu and Nuavg at the hot lower surface are as follows:

Nu = −knf

kf
(1 + 4

3
RdNr3)

(
∂θ
∂Y

)
|Y=0

Nuavg =
∫ 1

0
NudX
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3.2 The Numerical Solution

The Galerkin based finite element method is applied to find the numerical solution

of the governing system of partial differential equations for the velocity, pressure

and temperature components. The dimensionless governing partial differential

equations are first transformed into weak or variational form by multiplying the

suitable test function and integrating over the computational domain. In particu-

lar, the discretization of the equations is performed with the help of higher order

Ladyzhenskaya-Babuska-Brezzi (LBB) stable Q2/P
disc
1 -element pair (see for [47]

for further details). That means the biquadratic (Q2) finite element space is uti-

lized for the velocity components, temperature and pressure is approximated in the

linear discontinuous (P disc
1 ) finite element space. After that the integration on each

term is carried out by using the appropriate Gaussian quadrature method. The

biquadratic element (Q2) has 9 local unknowns for each velocity and temperature

variables and 3 unknowns for the piecewise linear (P disc
1 ) pressure in each element.

Thus, a total of 30 unknowns for each element consisting of velocity, pressure and

temperature components needs to be computed. It is considered the sequences of

structured nodes, which are generated through uniform refinement from a coarsest

grid (l = 1) having one element only. A regular refinement constructs the mesh

of any higher level (l + 1) by joining the opposite mid points of element edges

(see [48, 49] for further details). Figure 3.2 depicts the grids for various levels

` = 1, 2, 3, respectively. The discretized systems of nonlinear algebraic equations

are computed with the help of Newton’s method and the linearized subproblems

in each nonlinear iteration are solved by using the Gaussian elimination method.

The convergence is achieved by making sure that nonlinear residual falls below

10−6 in the l2-norm. First, we take coarsest mesh containing one cell only at level

` = 1 then it is refined by sequence of meshes for next higher levels, i.e., ` + 1

(see Figure 3.2).
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Figure 3.2: The sequence of grids on space mesh level = 1,2,3 (from left to

right).

3.2.1 The Code Validation

The given Table 3.3 shows the code validation for the mixed convection flow where

it can be seen that results have good agreement with published results in the lit-

erature. Table 3.4 shows the grid convergence test for different computation levels

for Nuavg with γ = 0, ε = 0.6, Nr=1.1, Ri=(1 and 10), Re=100, Da = 10−3,

φ = 0.04, Ha=25 and Rd=1. The number of elements (#EL)and total number

of degree of freedom (#DOFs) which are essential for the approximation of tem-

perature, velocity and pressure with respect to used discretization are shown in

Table 3.4. First, the coarsest grid comprising of only one element at level `=1,

then the level ` = ` + 1 is acquired by dividing each of the element in to four

elements by joinning midpoints of opposite faces.

Reynolds

Number

Present

Study

Ref.

[50]

Ref.

[51]

Ref.

[52]

Ref.

[53]

Ref.

[54]

Ref.

[55]

100 2.03 2.05 2.01 - 2.09 - 1.94

400 4.02 4.09 3.97 4.14 4.16 4.05 3.84

1000 6.40 6.70 6.28 6.61 6.55 6.55 6.33

Table 3.3: Comparison of present results for Nuavg with those of [68-73] for

Gr=100.
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` # EL # DOFs Nuavg(Ri = 1)

4 64 1059 3.873425

5 256 4035 3.562933

6 1024 15,747 3.162628

7 4096 62,211 2.951288

8 16,384 247,299 2.848920

Table 3.4: The grid independence results for alumina-water nanofluid.

3.3 Results and Discussion

Numerical results are obtained for the mixed convection of alumina-water nanofluid

considering the impact of inclined magnetic field and nonlinear thermal radiation

for various governing parameters. The standard variables are taken as φ = 0.04,

Ri = 1, γ = 0, Nr = 1.1, Rd = 1, Re = 100, ε = 0.6, Da = 10−3, Ha = 25 unless

they are mentioned in the entire study.

Figure 3.3 explains the influence of radiation parameter on streamlines forRi= 0.01,

1 and 10. For small value of Richardson number Ri = 0.01 the streamlines show

the similar behaviour as Ri = 1. For these values, the weak eddies are observed

near the vertical walls of the cavity. The deeper flow activity is noticed due to

enhancement of buoyancy forces with augumentation of the Ri up to 10 and hence

the respective changes in flow behaviour are observed. As a result weak vortices

are combined into a single strong vortex in the middle of the enclosure. This shows

that the fluid has heigher velocity in this case.

Figure 3.4 demonstrates the impact of radiation parameter on isotherms for Ri

at 0.01, 1 and 10. For small values of Ri = 0.01 and 1, the isotherms show almost

the similar pattern as in the case of streamlines. On the right lower corner of cav-

ity isotherms with large magnitude are observed while low magnitude isotherms
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are being observed in the upper left corner.For the value of Rd = 3, isotherms

are moving obliquely from left lower to upper right corner of the enclosure. The

isothermal lines are equally spreaded as the Rd increases up to 5. This indicates

that conduction is leading in the enclosure.

Figure 3.5 and 3.6 show the influence of porosity parameter on the streamlines

amd isotherms respectively for the values of Ri = 0.01, 1 and 10. Mainly, the

two weak vortices along the opposite vertical adiabatic surfaces for ε = 0.2 and

Ri = 0.01, 1, are being observed in Figure 3.5. The eddies become strong and

maximum for ε = 0.8 as porosity parameter increases which is also obvious from

the maximum value of stream function.

As the porosity values changes from lower value to higher value, the isothermal

lines show higher movement from upper left corner towards lower right corner. It

means with increase in the porosity, we observe the maximum growth of isotherms.

For different value of porosity parameter used for Ri = 0.01 and Ri = 1, there

exist very less variation in isothermal patterns but significant variations occur for

Ri = 10. The gradual increase in porosity values for Ri = 10 show the gradual

conversion of conduction to convection in flow behaviour.

Figure 3.7 illustrate the influence of thermal radiation parameter on the average

Nu for all three regimes of convection. The average Nu is linearly increasing with

the augmentation of Rd.

Figure 3.8 shows that the effect of Rd on θavg for different values of Ri. The rate

of heat transfer is increased for all the case of convection, whereas θavg is increased

with radiation parameter and having same trends for all the values of Richardson

number.
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Figure 3.9 demonstrates the impact of temperature ratio parameter on the Nuavg

for different values of Richardson number that is 0.01, 1 and 10. Average Nusselt

number having direct relation with temperature ratio parameter. It can be noticed

that more heat is transfered in case of Ri = 10 act as compared to Ri = 0.01 which

shows that the moving surface is responsible for the heat transfer in all over the

cavity.

Figure 3.10 illuminates the effect of temperature ratio parameter (Nr) on average

temperature for all values of convection. Increasing the values of Nr enhances the

thermal state of fluid which is responsible for enhancement of average tempera-

ture, whereas θavg is reducing for modes of convection which shows that forced

convection is leading over the free convection and all of the heat is transferred

through bottom hot wall.

Figure 3.11 depicts that the behaviour of Nuavg in porosity parameter. It means

an increasing value of porosity parameter for Ri = 10 we get maximum value of

Nuavg.This shows that the increase in heat transfer is more prominent for free

convection in flow regime for Ri = 10.

Figure 3.12 displays that the temperature is enhanced with the increasing values

of porosity parameter. Again increasing value of Ri = 10 shows decreasing effects

on the value of θavg.
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Figure 3.3: Streamlines for different values of Rd with ε = 0.6, φ = 0.04,
Ha = 25, γ = 0, Re = 100, Nr = 1.1, and Da = 10−3.
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Figure 3.4: Isotherms shapes for different Rd with γ = 0, Nr = 1.1, ε = 0.6,
Da = 10−3,φ = 0.04, Re = 100, and Ha = 25.
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Figure 3.5: Streamlines contours for different ε with γ = 0, Rd = 1.0, φ = 0.04,
Nr = 1.1, Re = 100, Da = 10−3 and Ha = 25.
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Figure 3.6: Isotherms contours for different ε with Rd = 1.0, γ = 0, Nr = 1.1,
Da = 10−3, Ha = 25, φ = 0.04 and Re = 100.



Mixed Convection MHD Aluminium-Water Nanofluid Filled Porous Cavity 37

Figure 3.7: Effect of Ri on Nuavg at the bottom hot surface due to Rd.

Figure 3.8: Effect of Ri on θavg as a function of radiation parameter.

Figure 3.9: Effect of Ri on Nuavg at the bottom hot surface due to Nr.
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Figure 3.10: Effect of Ri on θavg as a function of temperature ratio parameter.

Figure 3.11: Effect of Ri on Nuavg at the bottom hot surface due to ε.

Figure 3.12: Effect of Ri on θavg as a function of porosity parameter.



Chapter 4

MHD and Joule Heating Impact

in Porous Cavity Filled with

Nanofluid

The main aim of this chapter is to extend the work of Mehmood et al. [35] and

analyze the impact of Joule heating numerically through streamlines, isotherms

and useful MATLAB graphs. The non-dimensional governing equations are solved

using the stable finite pair Q2/P
disc
1 .

4.1 Problem Formulation

The system to be examined is a two dimensional, Newtonian, incompressible flow

in lid-driven porous square cavity having nanofluid considering the effect of Joule

heating. The upper wall and lower wall of the cavity has been reserved at cold

temperature Tc and hot temperature Th, respectively, where as both vertical sur-

faces are moving with velocity Vw in opposite directions and are adiabatic. The

internal heat generation, viscous dissipation and slipping effect between any two

phases in the energy equation are ignored. In the present study we considered the

39
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Joule heating in the modeling of energy equation. Physical situation along with

boundary conditions of proposed system has been shown in Figure 3.1.

4.1.1 The Dimensional Governing Equations

The governing PDEs and boundary conditionsunder the above described supposi-

tions are as:

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0 (4.1)

x-momentum equation:

ρnf
ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
µnf
ε

(
∂2u

∂x2
+
∂2u

∂y2

)
+ σnfB

2
0(v sin γ cos γ − u sin2 γ)

− µnf
K

u− 1.75ρnf√
150Kε

3
2

(
√
u2 + v2)u. (4.2)

y-momentum equation:

ρnf
ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
µnf
ε

(
∂2v

∂x2
+
∂2v

∂y2

)
+ σnfB

2
0(u sin γ cos γ − v cos2 γ)

− µnf
K

v + (ρβ)nfg(T − Tc)−
1.75ρnf√
150Kε

3
2

(
√
u2 + v2)v. (4.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
− 1

(ρCp)nf

(
∂qrx
∂x

+
∂qry
∂y

)
+

σnf
(ρCp)nf

B2
0v

2. (4.4)

Here u, v represent the components of velocity along x and y-axis respectively, Cp

denote specific heat, ρ is the fluid density and B0 is magnetic field strength.
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Dimensional Boundary Conditions

The boundary conditions of the proposed problem are described below:

• On the upper edge:

u = 0, v = 0, T = Tc

• On the lower edge:

u = 0, v = 0, T = Th

• On the vertical left edge:

u = 0, v = − Vw,
∂T

∂x
= 0

• On the vertical right edge:

u = 0, v = Vw,
∂T

∂x
= 0

4.1.2 Non-Dimensional Form of the Governing Equations

The above governing Equations (4.1) - (4.4) are reduced into non-dimensional form

with the help of following parameters:

X =
x

L
, Y =

y

L
, U =

u

Vw
, V =

v

Vw
, θ =

T − Tc
Th − Tc

, P =
p

ρnfV 2
w

,

Da =
K

L2
, Rd =

4σ∗T
3
c

a∗αf
, Re =

VwL

νf
, Gr =

gβ∆TL3

ν2
f

, P r =
νf
αf
,

Ha = B0L

√
σf
µf
, Ri =

Gr

Re2
, Nr =

Th
Tc
, Ec =

V 2
w

(ρCp)f (Th − Tc)
(Eckert number).
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∂U

∂X
+
∂V

∂Y
= 0. (4.5)

1

ε2

(
U
∂U

∂X
+ V

∂U

∂Y

)
= − ∂P

∂X
+

1

εRe

µnf
ρnfνf

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ)

− µnf
ρnfνf

1

ReDa
U − 1.75

√
150Daε

3
2

(
√
U2 + V 2)U. (4.6)

1

ε2

(
U
∂V

∂X
+ V

∂V

∂Y

)
= −∂P

∂Y
+

1

εRe

µnf
ρnfνf

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
ρf
ρnf

σnf
σf

Ha2

Re
(U sin γ cos γ − V cos2 γ)− µnf

ρnfνf

1

ReDa
V

− 1.75
√

150Daε
3
2

(
√
U2 + V 2)V. (4.7)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

(
αnf
αf

km
knf

+
4

3

Rd

(ρCp)nf
(1 + (Nr − 1)θ)3

)
(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

V 2. (4.8)

The Dimensionless Boundary Conditions

The dimensionless boundary condition for each wall of enclosure are written below:

• On the upper edge:

U = 0, V = 0, θ = 0

• On the lower edge:

U = 0, V = 0, θ = 1
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• On the vertical left edge:

U = 0, V = − 1,
∂θ

∂X
= 0

• On the vertical right edge:

U = 0, V = 1,
∂θ

∂X
= 0

4.2 Results and Discussion

Mixed convection magneto-hydrodynamic in porous enclosure filled with alumina-

water nanofluid considering the impact of inclined magnetic field, Joule heating

and non-linear thermal radiation is analyzed for various governing parameters. In

overall study the standard physical parameters ( Rd=1, Re=100, Ha=25, ε=0.6,

Nr=1.1, φ=0.04, Ec = 10−4, γ=0, Ri=1 and Da = 10−3 ) have been taken unless

they are mentioned. The governing Equations (4.1) - (4.4) are solved using the

FEM explained in Chapter 3 including the effect of Joule heating.

Figure 4.1 exhibits the impact of Hartmann number on streamlines for Ri = 0.01,

1 and 10. For the values of Ha = 0, Ri = 0.01 and 1, the two parabolic shaped

rotational vortices seem near the vertical surfaces primarily due to their move-

ment in the different ways. Furthermore, increase in Hartmman number up to

Ha = 100 for the case of Ri = 10 exibits that two rotating vortices nearby the

vertical surfaces are ultimately combined into a central main vertex in the center

of the enclosure. Figure 4.2 displays the effect of Hartmman number on isotherms

for different modes of convection Ri = 0.01, 1 and 10. The isotherms display the

similar behaviour for small values of Ri. For small Hartmann number, the greater

lines for isotherms appear at the right and small lines for isotherms occurs at the

left corner of the enclosure. The isotherms appear to travel diagonally from left

lower to upper right vortex of the enclosure.
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Figure 4.3 is illuminating the influence of Eckert number on streamlines forRi= 0.01,

1 and 10. The similar pattern for the values of Ri = 0.01 and 1 is shown on the

streamlines, for these values the two weak eddies are observed at vertical surfaces

of the cavity. The flow deeper activity in the enclosure is induced with an increase

in Ri up to 10.The maximum stream function value increases when Eckert param-

eter is progressively increases from Ec = 0 to Ec = 10−4and it is more marked for

the case of Ri = 10. In this state, weak rotating vortices ultimately merge into

a single eddy in the center of the enclosure demonstrating higher fluid velocity.

Figure 4.4 shows the impact of Eckert number on isotherms contours for different

modes of convection Ri = 0.01, 1 and 10. The Eckert number changes from lower

to higher value, it results in maximum value of stream function. For different

values of Eckert number used for Ri= 0.01 and 1, there exit very less variation in

isothermal patterns but significant variation occur for Ri = 10.

Figure 4.5 and Figure 4.6 illustrate the effect of Hartmann number on average

Nu and average temperature for all the regimes of convection. Nusselt number is

declined by increasing the Ha due to Lorentz force produced in the cavity while

average Nu is enhanced with the increment of Richardson number. For Ri = 10

after some value reduction has been noticed. It means conduction is more effective

for the heat transfer. For temperature profile, Ha has direct relation with θavg for

all the case of convection.

Figure 4.7 and Figure 4.8 display the impact of Eckert number on Nuavg and θavg

for all different modes of Richardson number such that Ri = 0.01, 1 and 10. As

Ec represents the Joule heating effect which resists the rate of heat transfer in the

enclosure, so with enhancing the Ec average Nu is linearly decreasing and average

temperature linearly increasing for all the values of Ri. It shows that due to high

resistance temperature gradient enhancing whereas Nu is falling in the cavity.

Figure 4.9 and Figure 4.10 illuminate the effect of Reynolds number on average

Nu and θavg for all the modes of convection. Enhancement in Re rate of heat

transfer increases which is more pronounced in case of Ri = 10 while opposite

trend observed for temperature gradient.



MHD and Joule Heating Impact in Porous Cavity Filled with Nanofluid 45

Ri = 0.01 Ri = 1 Ri = 10
H
a

=
0

H
a

=
25

H
a

=
50

H
a

=
10

0

Figure 4.1: Streamlines contours for different Ha with γ = 0, φ = 0.04, ε = 0.6,
Nr = 1.1, Rd = 1, Ec = 10−4, Da = 10−3 and Re = 100,.
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Figure 4.2: Isotherms profiles for different Hartmann number with Nr = 1.1,
φ = 0.04, Re = 100, Da = 10−3, ε = 0.6, Rd = 1, Ec = 10−4 and γ = 0.
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Figure 4.3: Streamlines contours for different Eckert number with γ = 0 Ha =
25, Nr = 1.1, φ = 0.04, ε = 0.6, Rd = 1,Re = 100 and Da = 10−3.
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Figure 4.4: Isotherms for different Eckert number with Ha = 25, φ = 0.04,
γ = 0, Da = 10−3, Nr = 1.1, ε = 0.6, Rd = 1 and Re = 100.
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Figure 4.5: Impact of Ri on Nuavg as different values of Ha.

Figure 4.6: Effect of Ri on θavg as a function of Ha.

Figure 4.7: Impact of Ri on Nuavg as different modes of Ec.
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Figure 4.8: Effect of Ri on θavg as a function of Ec.

Figure 4.9: Impact of Ri on Nuavg as a function of Re.

Figure 4.10: Effect of Ri on θavg as a function of Re.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In the present work, a steady and two dimensional incompressible mixed convec-

tion MHD flow in a porous enclosure thermal radiation together with Joule heating

is analyzed. The lower hot wall of the enclosure having a temperature Th and the

upper surface of the enclosure is kept at the cold temperature Tc. On the other

hand, the vertical surfaces are moving with velocity Vw in different directions and

kept adiabetic. The flow is smooth and stable in nature. P disc
1 element of 2nd

order accuracy is used to estimate the pressure and Q2-element of 3rd order accu-

racy is employed for the discretization of velocity component and temperature. In

the entire study the pertinent parameters the Richardson number, Darcy number,

porosity parameter, Eckert number, Hartmann number, temperature ratio param-

eter and Reynolds number. The impacts of governing parameters on dimensionless

temperature and velocity are examined with the help of streamlines, graphs and

isotherms.

In addition to the review work of Mehmood et al. [35], we examined the work

for effect of Joule heating in the energy equation. By the GFEM, the governing

equations have been solved. The impact of Eckert number, Hartmann number

and Reynolds number have been studied through isotherms and streamlines. The
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Nuavg and θavg are examined and plotted for the values of various parameters by

using MATLAB. We have numerically analyzed the following points by concluding

all worthy results:

• The maximum magnitude of stream function have been noticed with an

enhanced in Da and porosity parameter for a fixed value of Ri, it is more

augmented and marked for dominant free convective flows.

• The rise of thermal radiation parameter, higher value of stream function has

been observed in the enclosure.

• The amplification in heat transfer has been noticed with an addition in Nr,

Rd, φ and ε.

• For increasing the values of Hartmann number, Eckert number and Ri, the

average Nusselt number also increases.

• The increase of Eckert number shows that temperature profile is expanding

in the cavity and the θavg profile increases for greater values of Ha and Ri.

5.2 Future work

In future, this work may be extended in the following direction

• Impact of heat generation/absorbtion.

• Perform the non-stationary simulations.

• Apply the higher order finite elements in space.
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